Are Time-Domain Self-Force Calculations Contaminated by Jost Solutions?
نویسندگان
چکیده
José Luis Jaramillo, 2, ∗ Carlos F. Sopuerta, † and Priscilla Canizares ‡ Max Planck Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Potsdam, Germany Laboratoire Univers et Théories (LUTH), Observatoire de Paris, CNRS, Université Paris Diderot, 92190 Meudon, France Institut de Ciències de l’Espai (CSIC-IEEC), Facultat de Ciències, Campus UAB, Torre C5 parells, 08193 Bellaterra, Spain (Dated: October 15, 2011)
منابع مشابه
Fundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity
Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...
متن کاملPersistent junk solutions in time - domain modeling of extreme mass ratio binaries
In the context of metric perturbation theory for non-spinning black holes, extreme mass ratio binary (EMRB) systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial...
متن کاملLarge Scale Experiments Data Analysis for Estimation of Hydrodynamic Force Coefficients Part 1: Time Domain Analysis
This paper describes various time-domain methods useful for analyzing the experimental data obtained from a circular cylinder force in terms of both wave and current for estimation of the drag and inertia coefficients applicable to the Morison’s equation. An additional approach, weighted least squares method is also introduced. A set of data obtained from experiments on heavily roughened circul...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011